笔趣阁

第九十二章 微积分的故事

《我的科学时代》转载请注明来源:笔趣阁biqugebiquge.com

翌日。

清晨时分,旭日东升,一抹朝阳落在清华园。

西院第28号房。

书房内。

窗户染了一层白霜,一缕缕阳光透过窗户照进无奈,屋内静谧无声,一个木制立式黑板搬进了书房。

“要学微积分,首先你要搞懂微积分是什么,不能知其然,不知其所以然。”华罗庚立于黑板旁边,写下了六个字。

微积分是什么。

“我们先从最基础的求面积讲起,在古希腊时期,阿基米德那个时代人,处于初步发展阶段的几何,数学家们遇到一个棘手且严峻的问题,那就是求面积,三角形和正方形这些图形有面积公式,所以求解很简单,但问题在于,那些不规则图形的面积该怎么求?”

“例如我现在画的这条s型曲线,这条曲线围成的面积需要求解,但没有公式,这个时候,如何求解一条曲线围成的面积,就成为了当时数学家们研究的问题。”

“阿基米德找到了办法,余华,你知道是什么办法吗?”

华罗庚目光看向余华。

“穷竭法,用熟悉的图形去无限逼近曲线围成图形的面积。”余华回答道。

“对,穷竭法,提出者安提芬,改进者欧多克斯,完善者阿基米德,穷竭法思想就是用无限个熟悉图形去求一条曲线围成图形的面积,在数学史上,穷竭法被视为微积分的前身,且严谨性无可挑剔。”

华罗庚右手握着粉笔,画出穷竭法的求解过程,用一个个三角形去填充s型曲线所围成的面积,最终求出面积大小。

整个过程极为繁琐,但无比严谨。

华罗庚求解完成,随即用板刷擦去公式和图形,又重新写下一个新的概念,通过矩形求面积:

“穷竭法沿用到了十七世纪,这一千多年历史之中,有我国的割圆术求面积,但计算过于复杂,并不适用,穷竭法自身局限性也逐渐明显,对于不同曲线围成的面积需要使用不同的图形去逼近,而不同图形的证明技巧并不一样,极为繁琐,这个时期数学界出现‘用矩形来逼近原图形’,思想与穷竭法一致,且更加简单,但矩形求解存在一个问题,那就是失去了严谨性,这是一个非常严重的情况。”

严谨是数学的灵魂。

失去简单性,数学失去很多愚笨者。

失去严谨,数学将会失去一切。

如果一个定理,一个公式,一个数学常数失去了严谨性,那意味着整个数学大厦的崩塌。

余华全神贯注聆听,关于华罗庚讲解的重点,尽数记入脑海之中,理解程度非常迅速。

“牛顿和莱布尼茨对于矩形求解存在的问题非常重视,经过这两位数学家的不懈研究,牛顿和莱布尼茨意外发现了一个关键性东西,也就是微积分最基本和最重要的核心思想,那就是微分与积分之间的互逆运算,用数学公式表达为微积分基本定理。”

更多内容加载中...请稍候...

本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!

小说推荐:《我的梦境可以捡到至宝》《我能听到凶案现场的声音[刑侦]》《仙子,逼我吃软饭是吧》《人渣反派自救系统》《大明:嘉靖修仙啦》《无限恐怖之这个中洲很叛逆》《真灵九转》《成为神明的我只锤奇观》《我在废土世界扫垃圾》《石破天穿越令狐冲

仲渊2提示您:看后求收藏(笔趣阁biqugebiquge.com),接着再看更方便。若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

新书推荐

汉室可兴大唐西域少年行五代十国一儒生纪元1701宗明天下虚拟战线大汉昌邑王汉家日月宦海风流大明至圣异域纵横记大唐国妖少女与枪与异界三流书童战国修罗传乱世妖娆王晋枭大明小官人非洲帝国大明之帝国再起拉倒吧,朕的大秦都完了讲这些有啥用三国云飞扬江东幼虎宣和画卷乌衣天下猎明千年军国娶个毛妹当老婆五胡明月唐时归从来没有的帝国樱花下的血刀贼三国淘宝大明明风万里重生之朕即国家最终反击医入白蛇重生明末当皇帝三国之帝统天下